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One of the interesting effects generated during the action of a variable external field 
of large amplitude (pumping) on matter is parametric instability. At the present time this 
instability has been observed in ferrites, antiferromagnets, dielectrics, plasmas, and other 
media. Despite the variety of phenomena, in all cases parametric instability has very much 
in common - decaying instability of waves in the medium, satisfying the conservation laws: 

kp = k I + k2, ~@ = ~ki ~ ~ks" 

Here kp and ~p are the wave vector and frequency of the pumping field, while kl, k2 and ~kl, 
~k2 are the wave vectors and frequencies of the generated waves. In the absence of pumping 
the wave amplitudes in the medium decay as exp (-~kt). Pumping leads to creation of waves, 
while the frequency of their creation is proportional to the amplitude of thepumping field. 
Thus, for an excess of the pumping field over the threshold value wave creation predominates 
over their dissipation. As a result the amplitudes of parametric waves (PW) increase exponen- 
tially, and their growth can be restricted only by nonlinear wave interaction. 

The present study is devoted to studying the threshold of parametric wave excitation 
on the surface of water, excited by the pressure of an ac electric field E2/8~. The basic 
experimental device is a transparent vessel filled with water, of sizes 90 • 90 • 10 cm, 
over which is found a metallic electrode. A voltage up to 13 kV and a frequency up to 14 
GHz can be applied between the electrode and the water, and the gap was around 1 cm. A. 
laser beam was propagated vertically through the waterlayer, so that the slope of the water 
surface could be determined from its inclination. 

Below we explain the connection between the wave damping Tk and the pumping amplitude, 
and the physical generation mechanisms of this damping are discussed. The answer is almost 
trivial in an infinite system: ~k = IVkl (Vk is the interaction coefficient of waves with the 
pumping). The system can be considered infinite if its size L exceeds substantially the wave 
mean free path Vk/7k (v k is the group velocity). Under the conditions of our experiment 
L ~ Vk/7k, and therefore the threshold could depend not only on the damping of free waves 7k, 
but also on the friction with the wall and on the fact that the wave spectrum in the vessel 
is discrete. We show that these factors are not essential, and the instability threshold 
in the device is near the threshold in an infinite system. 

The damping of surface waves in an ideal fluid is 7k = 2~k2 (~ is the kinematic viscos- 
ity) [i]. The measured damping was larger by several times. This is explained by the fact 
that a film is formed on the water surface of undissolved grains adsorbed from air, and, 
possibly, of undissolved material contained in the volume of the fluid. The presence of the 
film leads to a variation in the surface tension coefficient and large additional wave dissi- 
pation [2]. The occurrence of a surface film and its strong effect on wave damping in water 
is a quite general property, noted in studies of wave excitation by wind on the ocean sur- 
face [3]. 

The experimentally measured quantities were damping, thresholds of wave excitation, 
and the surface tension Coefficient. This made it possible to establish the values of the 
phenomenological constants characterizing the elasticity of the adsorbed film. 

i. Parametric Instability of a Finite System. Parametric wave excitation is conve- 
niently described within the classical Hamilton formalism [4, 5]. In this case the equa- 
tions of motion for complex wave amplitudes a(r) are @a(r)/@t ~--iSH/(Sa*(r)). The Hamiltonian 
H{a, a*) for waves on a fluid surface and the relation of normal canonical amplitudes a, a* 
with the amplitude of surface oscillations and the velocity potential were determined in [6]. 
We assume that the wave amplitude is small, and restrict ourselvesto second-order terms 
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in a,a* in the Hamiltonian expansion. In the absence of an electric field (pumping) there 
may exist weakly damped waves in the medium. In an infinite system these are plane waves 
a(r) exp (ikr) with frequency 

~ = ] / g k  + ak31p (1.1) 
(g is the free-fall acceleration, ~ is the surface tension coefficient, and p is the density). 
In a confined system, such as a rectangular vessel, the normal eigenfunctions are 

2 ~m (1.2) ~vq = -L- cos (px) cos (qy), p = ? ,  q = --s 

(L is the size of the square, and n, m are integers), and the eigenfrequencies are given by 
Eq. (i.i) with k = #p2 + q2 [I]. We expand a(r) in the eigenfunctions~(r). In the general 
case the equations of motion for the expansion coefficients in the presence of parametric 
pumping are within the linear approximation 

~a~ 
--or + (~ + i~)  a~ + ~ ~ V~,e-~%~a~ = he -%t .  

Here we introduced wave damping and a coupling coefficient with pumping VXX, ; ~o = ~p/2 is 
the electric field frequency, and f% is a generalized force, acting with frequency ~0. It 
is caused by' inhomogeneities of the electric field E(r, t), and is small under experimental 
conditions. In an infinite homogeneous medium with a homogeneous pumping field %=k, V~k, = 
VhS(k + k'), and in a square vessel with homogeneous pumping ~ = (p~q)~ V~, = Va~,~qq,. The 
matrix element V k was calculated in [6, 7]: 

E~k ~ 
V k = ~ c th  ( k ~  ( 1 . 3 )  

( h  i s  t h e  v a l u e  o f  t h e  g a p  b e t w e e n  t h e  e l e c t r o d e  a n d  t h e  w a t e r  s u r f a c e .  I n  a h o m o g e n e o u s  
e l e c t r i c  f i e l d  f x  = O, a n d  t h e r e f o r e  t h e  a m p l i t u d e s  a~,. a~ i n c r e a s e  e x p o n e n t i a l l y  w i t h  an  
i n c r e m e n t  ~X: 

=~, =~ ,-, e ~z, n = - vx + V I  v~ i ~ - g f ,  ~ = ~ _ Co, ~ = ( _  p, _ q). ( 1 . 4 )  

It is understood that growth is possible only for quite high pumping amplitude, when 

I V~ I ~ 1> ~ + ~-L ( i .  5) 
The instability evolves when condition (i.5) is satisfied for one type of oscillations a~. 
In an infinite system the spectrum of oscillations a~ is continuous, and the instability 
threshold is determined from the condition 

IVhl = ?N for e~ = ~0" (!.5) 

In an unbounded fluid Sk and m k are isotropic, therefore the threshold is achieved directly 
for all waves with wave vectors near resonance mk = ~0- For an electric field exceeding the 
threshold value E c the linear theory of parametric wave excitation considered here is not 
valid. 

It follows from Eqs. (1.4) that for electric field values less than the threshold the 
wave amplitude a~ tends to zero. Account of the small induced force fx leads to a finite 
stationary amplitude a~ up to the threshold: 

a~ = (?~ -- ' ~ )  f~ + W~I~ e_i% t ( I .  7 ) 

while the process occurs exponentially with a decrement in the resonanance area 

k: zth (kh) (E~ -- E~). (1.8)  I V l = 32~e~k 

In a finite system the parameter k runs through a discrete series of values, and the 
spectrum ~ is also discrete. For example, for waves in a square vessel the admitted X 
values can be located only in site~ of a square lattice with a period ~/L. In this case, 
generally speaking, the condition ~l = 0 cannot be satisfied, and the threshold in a finite 
system is higher than in an infinite system. If the size of the system L is large in com- 
parison with the wave length, then V l and 7% depend weakly on I near the resonance surface 
~X = ~0, and therefore the threshold will be achieved first for those I for which the fre- 
quency separation I~XI is minimal. We estimate minl~xl. For this it is convenient to 
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transform in %-space to polar coordinates and determine at which distance from the resonance 
neighborhood is found the closest point of ~-space. The separation 5% from the resonance 
neighborhood to the nearest point of ~-space can be obtained from the equality condition of 
the areas 

2~kAX= ~-  , ( 1 . 9 )  

2~ i The factor 1/4 in (1.9) arises from the fact that one must consider eigen- whence A% =-L-~" 

om h 
functions (1.2) with p > 0, q > 0. Knowing A%, it is easily found that minl~x]~A%= 

vh 2m (v k is the group velocity) The parametric instability threshold is reached for ~-~ 

kLiJ" 

H e r e  ~ = Vk /?k  i s  t h e  mean f r e e  p a t h  o f  w a v e s .  Thus ,  even  when s i s  c o m p a r a b l e  t o  o r  e x -  
c e e d s  t h e  s y s t e m  s i z e ,  t h e  t h r e s h o l d  a m p l i t u d e  o f  t h e  f i e l d  i s  n e a r  t h e  v a l u e  f o r  an i n f i n i t e  
s y s t e m .  The t h r e s h o l d  i s  s u b s t a n t i a l l y  e n h a n c e d  in  c o m p a r i s o n  w i t h  t h e  t h r e s h o l d  f o r  an i n -  
f i n i t e  s y s t e m  o n l y  f o r  v e r y  s m a l l  s y s t e m  s i z e s  L 5 ~ ( d  = 2~ /k  i s  t h e  w a v l e n g t h ) .  The o p p o s i t e  
i n e q u a l i t y  L ~ ( s  z / :  i s  s a t i s f i e d  in  o u r  e x p e r i m e n t s ,  t h e r e f o r e  t h e  e f f e c t  o f  s p e c t r u m  
d i s c r e t e n e s s  on t h e  t h r e s h o l d  can  be  n e g l e c t e d .  

Wave d i s s i p a t i o n  a t  t h e  b o u n d a r y  a l s o  l e a d s  t o  f u r t h e r  c o n t r i b u t i o n  t o  damping [ 1 ] :  A~s = 
3 V ~  

2~/2 L T h i s  c o n t r i b u t i o n  i s  i s o t r o p i c ,  and u n d e r  e x p e r i m e n t a l  c o n d i t i o n s  i s  r o u g h l y  10 -2 

o f  t h e  t o t a l  damping  ?k"  

I t  seemed i n i t i a l l y  t h a t  damping  o f  s u r f a c e  waves  i s  due t o  b u l k  v i s c o u s  f r i c t i o n  [1]  

7k = 2vk~- ( 1 . 1 0 )  

E x p e r i m e n t  showed,  h o w e v e r ,  t h a t  t h e  t h r e s h o l d  o f  p a r a m e t r i c  i n s t a b i l i t y  i s  s u b s t a n t i a l l y  
h i g h e r  t h a n  t h a t  c a l c u l a t e d  by Eqs .  ( 1 . 6 ) ,  ( 1 . 1 0 ) ,  and h a s  an unknown f r e q u e n c y  d e p e n d e n c e .  
The e n h a n c e d  wave damping  i s  r e l a t e d  t o  t h e  known p r o p e r t i e s  o f  w a t e r  a d s o r b e d  on t h e  s u r f a c e  
o f  a n o n d i s s o l v i n g  m a t e r i a l .  The p r e s e n c e  o f  a f i l m  o f  a d s o r b e d  p a r t i c l e s  l e a d s  t o  f o r m a t i o n  
o f  a v i s c o u s  l a y e r  n e a r  t h e  f l u i d  s u r f a c e  due t o  f r i c t i o n  w i t h  t h e  f i l m .  I n  t h e  l i m i t i n g  c a s e  
o f  a d e n s e  i n c o m p r e s s i b l e  f i l m  t h e  wave damping  e q u a l s  [1 ,  2] 

7h = Y ' e k  vk2/8. ( 1 . 1 1 )  

F l u i d  m o t i o n s  l e a d  t o  i n h o m o g e n e i t i e s  in  t h e  d i s t r i b u t i o n  o f  a d s o r b e d  p a r t i c l e s  o v e r  
t h e  s u r f a c e ,  g e n e r a t i n g  an a d d i t i o n a l  r e s t o r i n g  f o r c e  a c t i n g  on t h e  s u r f a c e .  T h i s  f o r c e  i s  
p r o p o r t i o n a l  t o  t h e  g r a d i e n t  o f  t h e  s u r f a c e  t e n s i o n  c o e f f i c i e n t  a ,  whic  h ,  i n  t u r n ,  d ep en d s  
on t h e  a d s o r b e d  p a r t i c l e  c o n c e n t r a t i o n  c .  Assuming  t h a t  t h e  wave q u a l i t y  i s  h i g h  (~k ~ ~k),  
one  can  o b t a i n  an e x p r e s s i o n  f o r  wave damping  on t h e  s u r f a c e  o f  an unbounded  f l u i d  [2] 

~-; [~ +2p~] ~-(i-0 v 2 ~ 2 ~  ~ (~.12) 

where 8 = a~/8 in c is a parameter characterizing the elasticity of the film. 

In the limiting case (vkS/(o~)a/4 >> ~a/p~ the answer (i.i0) follows from (1.12), i.e., the 
effect of the film is negligibly small. In the 

damping i s  ~ k = ~ - - ~ ( ~ ) V ~ ' f "  F i n a l l y ,  i n  t h e  

the damping tends to ( i . i i ) :  ~= 1-~_~f.kvk' 
zgz 

parameter region vk2/r << ~ka/po)~ << (vk2/(ok)l/2 the 

limit of a rigid film ~ka/pohk 2 >>(~k2/e)k)i/~ 

The maximum damping for a fixed frequency is reached for a value of the quantity 6, de- 

pending on the concentration co, when ~ka/p~=}f-2"~/mk. The maximum damping value is twice 
as large as the limiting value. 

2. Experimental Device. Method and Experimental Results. In the present study we have 
determined experimentally the threshold voltage of the electric field E c of surface wave (SW) 
excitation for various pumping frequencies, as well as the dependence of wave damping ~k on 
the wave vector. The presence of particles on the water surface leads to a decrease in the 
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Fig. 1 

21 
Fig. 2 

coefficient ~ [8]. To determine the wave dispersion law (I.i) we measured the quantity ~. 

The device is illustrated schematically in Fig. I. The fluid is in vessel i (90 x 90 x 
9 cm). A planar metallic electrode 2 (90 x g0 cm) was placed over the water surface, the gap 
was roughly 1 cm, and the electrode was horizontal with accuracy of 200 Bm. An ac electric 
voltage with amplitude near i0 kV and frequency near i0 Hz was applied between the water and 
the electrode. The electric field created a high-voltage source 3, being an intense two- 
channel amplifier with amplitude modulation. The source had the following parameters: volt- 
age amplitude from 0 to 13 kV in the frequency region from 0 to 14 Hz, amplitude nonlinearity 
less than 0.1%/10 kV, amplitude stability 0.3%, coefficient of harmonics <0.1%, modulation 
frequency 2 kHz, and harmonic modulation amplitude <1%. This source made it possible to 
create an electric field voltage up to i0 kV/cm, capable of exciting surface waves in the 
absence of an electric probe between the water and the electrode. The electric field was 
recorded by measuring the voltage applied directly between the electrode and the water in 
terms of the voltage duration. The surface oscillations were fixed by an optical laser de- 
vice, consisting of a laser 4 and a differential photodevice 5. 

The automation system 6 was regulated by the electric voltage amplitude, and during the 
experiment allowed the selection and handling of data, entering the laser device and the 
high voltage source [9]. The experiment included the selection and visual control of data 
on the measurement time, harmonic fluid oscillations, and high voltage. In this case was 
realized the operative data processing and their maintenance for subsequent statistical treat- 
ment. 

The measurement errors are basically statistical in nature: the spread of high voltage 
harmonics was determined by the discreteness of the analog -digital transformation, the noisy 
fluid oscillations were generated by structural vibrations, etc. The effect of excited waves 
on the high-voltage source was negligibly small (<0.1%) up to the probe. 

The statistical treatment of experimental data, such as the time dependence of the wave 
amplitude, the voltage dependence of the standard SW amplitude, the frequency dependence of 
the electric field intensity, etc., was carried out by tracing regression curves through the 
experimental points. The curve parameters and their errors were determined by the highest 
likelihood method, while taking into account the error of both coordinates of the experimental 
points [I0]. For example, to determine V c from the voltage dependence of the stationary SW 
amplitude we used a regression curve with parameter V c. 

To determine the threshold of parametric wave excitation we measured the SW amplitude n 
for various values of the amplitude V and the frequency m of the electric voltage. Since 
the pressure E2(t)/8v varied with frequency 2m, the parametric wave had frequency mp/2 = m. 
Therefore ~ was assumed proportional to the value of the harmonic signal ~, characteristic of 
the laser device. The amplitude V was found from the value of the first harmonic of the elec- 
tric voltage. 

The measurement of the threshold field amplitude was carried out as follows. At fixed 
frequency m an electric voltage with amplitude V around 8 kV, which is quite below the thresh- 
old, was suppressed. In this case the amplitudes of all oscillation harmonics of the fluid 
surface are comparable with the noise. The electric voltage amplitude was then enhanced 
with a variable step of 50-1000 V, depending on the closeness to the threshold, and the mea- 
surement was carried out of the amplitude of the first wave harmonic N as a function of time. 
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When the voltage amplitude approaches the threshold value of the amplitude of the first wave 
harmonic, the values of the remaining harmonics remained at the noise level (less than 0.1% 
of the value of the first harmonic near the threshold). For fixed electric voltage the wave 
amplitude tended exponentially to its stationary value. Each new step of varying the volt- 
age was carried out subsequently, as the fluid oscillations are established. The establish- 
ment time I/I~ I varied from i0 sec to 40 min, depending on the nearness to the threshold. 
From the data were determined the stationary wave amplitude n0, the decrement I~I, and the 
electric voltage amplitude V. From Eqs. (1.7), (1.8) of the linear theory we obtain that in 
approaching threshold the stationary wave amplitude n0, found in resonance withthe pumping, 
increases as the hyperbola ~o.,.[/I/IvlN1/(V~-V~), while the i/n0 drops linearly (Fig. 2). 
From the intersection point V~ of the straight line with the V 2 axis we determined the thresh- 
old V c with accuracy 0.1-0.3%. In the direct neighborhood of the threshold (around 200 V) 
was observed a sharp deviation from the linear theory. The SW relaxed nonexponentially to 
the stationary value, and no increased according to the law no ~ (Vc - V) -6, where 6 = 2-2.5. 
Since the linear phases of instability were considered, the points mentioned were excluded. 

The measurement accuracy of the threshold voltage E c was determined by the measurement 
error of the gap h (around 10%). To decrease the error we used the following method. Vary- 
ing the gap with a step of 3000 ~m, several threshold value measurements were carried out for 
the fixed frequency f = I0 GHz. Assuming that SW excitation occurred for identical values 
of the electric field, we found h from the proportionality condition of V c along the gap at 
all measurements. The error decreased to 1.5%. 

Another method of measuring the threshold field amplitude consisted of finding E~ from 

32~p~k I~l ,  where l~land E were simul- the dependence (1.8) of the linear theory: E~ E2 + k~oth(kh] 

taneously determined experimentally. The E c measurement accuracy was 0.5-2%. The difference 
between the E c values obtained by the two methods did not exceed the error of E c measurement 
(1-2~). 

The s u r f a c e  t e n s i o n  c o e f f i c i e n t  a was found  by means o f  l a s e r  m e a s u r e m e n t s .  A t r a v e l i n g  
wave was c r e a t e d  on t h e  w a t e r  s u r f a c e  by t h e  e l e c t r o m e c h a n i c a l  v i b r a t o r ,  and t h e  wave v e c t o r  
k was d e t e r m i n e d  f o r  v a r i o u s  wave f r e q u e n c i e s  ~ f rom t h e  d e p e n d e n c e  o f  t h e  wave phase  ~ on 
t h e  d i s t a n c e  x f rom t h e  v i b r a t o r :  ~ = kx + c o n s t .  The d i s t a n c e  x was measu red  w i t h  an a c -  
c u r a c y  o f  100 um. From t h e  d a t a  o b t a i n e d  we t h e n  d e t e r m i n e d  t h e  p a r a m e t e r  a o f  t h e  depen-  
dence  ( 1 , 1 ) .  Th i s  method made i t  p o s s i b l e  t o  o b t a i n  t h e  s u r f a c e  t e n s i o n  c o e f f i c i e n t  w i t h  
a c c u r a c y  2%. However,  in  r e p l a c i n g  t h e  w a t e r  t h e  s p r e a d  in  a v a l u e s  was 5%. I n  our  s e r i e s  
o f  e x p e r i m e n t s  a = 57 • 3 e r g / c m  2, which  i s  by 22% l e s s  t h a n  f o r  a s u r f a c e  o f  p u r e  w a t e r .  

I n  p r e l i m i n a r y  e x p e r i m e n t s  we used  d i s t i l l e d  w a t e r ,  bu t  i t  has  been o b s e r v e d  t h a t  a f t e r  
s e v e r a l  h o u r s  a f i l m  o f  a d s o r b e d  p a r t i c l e s  i s  fo rmed  in  i t ,  whose " r i g i d i t y "  i s  enhanced  
with time. Therefore we selected ordinary water, whose "rigidity" is established following 
several more hours, which made it possible to verify the reproducibility of measurement re- 
sults obtained in 5-7 days. 

The frequency dependence of E c was measured in the region 4-13 Hz. Figure 3shows the 
experimental data, as well as theoretical curves, calculated by Eqs. (1.3), (1.6), (1.12). 
Curve 1 with 8 = 160 • 20 erg/cm 2 was obtained by the maximum likelihood method. It differs 
explicitly from curve 2 with ~ = ~, corresponding to absolute film rigidity. 

The accuracy of E c measurements affected the error in determining the viscosity of water. 
Experimentally the temperature varied within the limits 16-20~ therefore the viscosity 
spread was 4%. This led effectively to a further spread in threshold of order i%. At the 
points f = 5, 7, 9 Hz we performed additional measurements. The E c values were reproduced 
with an accuracy corresponding to an error 2-2.5%. 

From the (f, Ec) data andEqs. (1.3), (1.6) we find the dependence of wave damping on 
the wave vector. Figure 4 shows results of experiments and theoretical curves with various 
8 values: curve 5 with ~ = 0 corresponds to a pure surface, and is described by Eq. (i'i0), 
i) corresponds to 8 = 5 erg/cm 2, 2) ~ = 20 erg/cm 2, 3) with 8 = 160 erg/cm 2 passes through the 
experimental points, and 4) with 8 = ~ corresponds to the limit of a rigid lattice and is de- 
scribed by Eq. (i. Ii). It is noted that the experimentally measured damping 7k (curve 3) is 
substantially larger than (I.i0) (.curve 5), and is in quantitative agreement with the quan- 
tity (1.12), obtained in [2], in the whole investigated region from 4 to 13 Hz. 
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In processing the experimental results we neglected the dependence of the surface ten- 
sion coefficient and of other parameters on the electric field, since it was less than I0 -S 
of the intermolecular field. 

The following is noted in conclusion: the behavior of waves up to the threshold: (E c - 
E)/E c ~ 0.03 is well described by the linear theory of parametric instability; the surface 
tension coefficient of water with particles adsorbed by the surface under experimental condi- 
tions is lower than for pure water; the available theory [2] explains the mechanisms and well 
describes wave damping on a water surface in the frequency region 4-13 Hz; wave damping on 
the water surface is due to the film surface, and in the frequency region investigated dif- 
fers by 4-30 times from the value 2vk 2, caused by bulk viscous friction; an essential effect 
on wave damping occurs due to the dependence of the surface tension coefficient on the ad- 
sorbed particle concentration (film "elasticity"). 

The authors are grateful to V. S. L'vov and A. A. Predtechensk for stimulating and use- 
ful discussions during all phases of this work, as well as D. A. Shapiro for numerous useful 
consultations on statistical handling of experimental data. 
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